Contrôles d'entraînement
0%
Contrôle d'entraînement sur la géométrie dans l'espace (Orthogonalité) - 1
Exercice 1D'après Bac Polynésie 2022
L'espace est rapporté au repère orthonormal où l'on considère:
- les points , , et ;
- le plan P d'équation cartésienne .
- Démontrer que le triangle ABC est rectangle en A.
- Calculer le produit scalaire puis les longueurs et .
- En déduire la mesure en degrés de l'angle arrondie au degré.
- Démontrer que le plan est parallèle au plan ABC.
- En déduire une équation cartésienne du plan .
- Déterminer une représentation paramétrique de la droite orthogonale au plan et passant par le point .
- Démontrer que le projeté orthogonal du point sur le plan a pour coordonnées .
- On rappelle que le volume d'une pyramide est donné par où désigne l'aire d'une base et la hauteur de la pyramide associée à cette base. Calculer l'aire du triangle puis démontrer que le volume de la pyramide est égal à unités de volume.
Exercice 2D'après Bac Métropole et La Réunion 2023
L'espace est rapporté au repère orthonormé
On considère:
- les points , et ;
- la droite de représentation paramétrique : , où ;
- le plan d'équation cartésienne: ;
- le plan d'équation cartésienne: .
- Lequel des points suivants appartient au plan ?
- Le triangle est:
- équilatéral
- rectangle isocèle
- isocèle non rectangle
- rectangle non isocèle
- La droite est:
- orthogonale au plan
- sécante au plan
- incluse dans le plan
- strictement parallèle au plan
- On donne le produit scalaire . Une mesure au degré près de l'angle est:
- 34˚
- 120˚
- 90˚
- 0˚
- L'intersection des plans et est:
- un plan
- l'ensemble vide
- une droite
- réduite à un point